1、设椭圆方程为:x^2/a^2+y^2/b^2=1,
2b=4,b=2,
∵A在直线y=x上,
∴设A点坐标为(x1,x1),
代入椭圆方程,
x1^2/a^2+x1^2/4=1,
x1^2=4a^2/(4+a^2),
|F1F2|=2c,
S△AF1F2=|F1F2|*x1/2=2√6,
x1=2√6/c,
(2√6/c)^2=4a^2/(4+a^2),
24/(a^2-4)=4a^2/(4+a^2),
a^4-10a^2-24=0,
(a^2-12)(a^2+2)=0,
a=2√3,(舍去负根),
c=2√2,
∴椭圆方程为:x^2/12+y^2/4=1.
2、左右焦点坐标分别是F1(-2√2,0),F2(2√2,0),
向量PF1=(-2√2-x0,-y0),
向量PF2=(2√2-x0,-y0),
∵π/2〈〈F1PF2〈π,
∴PF1·PF2〈0,
PF1·PF2=-8+x0^2+y0^2