1)首先(0,x)∫f(t)dt是一个变上限积分,可以看成h(x)
2)设 ∫f(t)dt=F(x)+C 的话,则
h(x)=(0,x)∫f(t)dt=F(x)-F(0)
两边求导,得h‘(x)=F’(x)=f(x)
——所以不管积分下限是几,只要是个常数,求导结果都是f(x)
1)首先(0,x)∫f(t)dt是一个变上限积分,可以看成h(x)
2)设 ∫f(t)dt=F(x)+C 的话,则
h(x)=(0,x)∫f(t)dt=F(x)-F(0)
两边求导,得h‘(x)=F’(x)=f(x)
——所以不管积分下限是几,只要是个常数,求导结果都是f(x)