f(x)=ax^2+bx+c
f(0)=1
则:c=1
∴f(x)=ax^2+bx+1
f(x+1)=a(x+1)^2+b(x+1)+1
f(x+1)-f(x)
=a(x+1)^2+b(x+1)+1-(ax^2+bx+1)
=2ax+a+b=2x
∴系数对应相等
{2a=2
{a+b=0
解得
a=1,b=-1
f(x)=x^2-x+1
f(x)=ax^2+bx+c
f(0)=1
则:c=1
∴f(x)=ax^2+bx+1
f(x+1)=a(x+1)^2+b(x+1)+1
f(x+1)-f(x)
=a(x+1)^2+b(x+1)+1-(ax^2+bx+1)
=2ax+a+b=2x
∴系数对应相等
{2a=2
{a+b=0
解得
a=1,b=-1
f(x)=x^2-x+1