1)∵∠BAD=∠BCD=90度,∴以BD为直径做圆(圆心为O),必经过A,C,(直径圆周角=90度)
连接圆心OA,OC,可知OA=OC=OB,∴∠OCA=∠OAC,∠OCB=∠OBC,
∵∠BAD=90度,且AB=AD,∴∠DBA=45度,OA=OB,∴∠DAB=∠DBA=45度,
△ABC中,∠ABC+∠BCA+∠CAB=∠OBA+∠OBC+∠BCA+∠CAO+∠OAB=2∠BCA+90度=180度
,∴∠BCA=45度,∵∠BCD=90度,∴AC平分∠BCD
2)∵∠BAD=∠BCD=90度,∴AB^2+AD^2=2AB^2=BC^2+CD^2=116,∴AB=√58望采纳