令Sn=a1 + 2 *a2 + 2^2 *a3 + 2^3 *a4+……+ 2^n-1* an=8-5n
所以S(n-1)=a1 + 2 *a2 + 2^2 *a3 + 2^3 *a4+……+ 2^n-2* a(n-1)=8-5(n-1)=13-5n
所以2^(n-1)*an=Sn-S(n-1)=(8-5n)-(13-5n)=-5
所以an=-5/[2^(n-1)]
令Sn=a1 + 2 *a2 + 2^2 *a3 + 2^3 *a4+……+ 2^n-1* an=8-5n
所以S(n-1)=a1 + 2 *a2 + 2^2 *a3 + 2^3 *a4+……+ 2^n-2* a(n-1)=8-5(n-1)=13-5n
所以2^(n-1)*an=Sn-S(n-1)=(8-5n)-(13-5n)=-5
所以an=-5/[2^(n-1)]