分别求和
x^2+x^4+x^6+……+x^(2n)
q=x^2,a1=x^2
所以x^2+x^4+x^6+……+x^(2n)
=x^2*[(x^2)^n-1]/(x^2-1)
=x^2*[x^(2n)-1]/(x^2-1)
2y+4y+6y+……+2ny
一共n项
a1=2y,an=2ny
所以2y+4y+6y+……+2ny
=(2y+2ny)*n/2
=yn(n+1)
所以x^2+x^4+x^6+……+x^(2n)+2y+4y+6y+……+2ny
=x^2*[x^(2n)-1]/(x^2-1)+yn(n+1)