a(n+1) = [a(n)]^2 + 2a(n),
a(n+1) + 1 = [a(n)]^2 + 2a(n) + 1 = [a(n)+1]^2,
若a(n+1)+1 = 0,则a(n) + 1 = 0 ,...,a(1) + 1 = 0,a(1) = -1,a(n) = -1.
若a(1)不为-1,则,a(n) + 1不为0.
因此,a(n+1) + 1 = [a(n) + 1]^2 > 0,
a(n) + 1 > 0.
lg[1 + a(n+1)] = lg[1+ a(n)]^2 = 2lg[1 + a(n)],
{lg[1+a(n)]}是首项为lg[1+a(1)],公比为2的等比数列.