用初等行变化求矩阵的逆矩阵的时候,
即用行变换把矩阵(A,E)化成(E,B)的形式,那么B就等于A的逆
在这里
(A,E)=
1 1 1 1 1 0 0 0
1 1 -1 -1 0 1 0 0
1 -1 1 -1 0 0 1 0
1 -1 -1 1 0 0 0 1 第2,3,4行都减去第1行
1 1 1 1 1 0 0 0
0 0 -2 -2 -1 1 0 0
0 -2 0 -2 -1 0 1 0
0 -2 -2 0 -1 0 0 1 第3,4行都加到第2行
1 1 1 1 1 0 0 0
0 -4 -4 -4 -3 1 1 1
0 -2 0 -2 -1 0 1 0
0 -2 -2 0 -1 0 0 1 第2行除以-4,第3行除以2,第4行除以2
1 1 1 1 1 0 0 0
0 1 1 1 3/4 -1/4 -1/4 -1/4
0 -1 0 -1 -1/2 0 1/2 0
0 -1 -1 0 -1/2 0 0 1/2 第1行减去第2行,第3行加上第2行,第4行加上第2行
1 0 0 0 1/4 1/4 1/4 1/4
0 1 1 1 3/4 -1/4 -1/4 -1/4
0 0 1 0 1/4 -1/4 1/4 -1/4
0 0 0 1 1/4 -1/4 -1/4 1/4 第2行减去第3行,第2行减去第4行
1 0 0 0 1/4 1/4 1/4 1/4
0 1 0 0 1/4 1/4 -1/4 -1/4
0 0 1 0 1/4 -1/4 1/4 -1/4
0 0 0 1 1/4 -1/4 -1/4 1/4
这样就已经通过初等行变换把(A,E)~(E,A^-1)于是得到了原矩阵的逆矩阵就是
1/4 1/4 1/4 1/4
1/4 1/4 -1/4 -1/4
1/4 -1/4 1/4 -1/4
1/4 -1/4 -1/4 1/4