a1=a,a(n+1)=2^n-3an,两端除以2^(n+1),
得a(n+1)/[2^(n+1)]=1/2-3*an/[2^(n+1)].
代入bn=an/2^n,得b(n+1)=1/2-3bn/2,
变形得(b(n+1)-0.5)=(-3/2)(bn-0.5);
所以数列cn=bn-0.5为等比数列,c1=b1-0.5=a/2-0.5;
所以cn=(-3/2)^n*(a/2-0.5);
得bn=(-3/2)^n*(a/2-0.5)-0.5;
an=bn/2^n=(-3)^n*(a/2-0.5)/[2^(2n)]-2^[-(n+1)];