设f(x)=ax^3+bx^+cx+d,
由余数定理,f(1)=a+b+c+d=1,①
f(2)=8a+4b+2c+d=3,②
②-①,7a+3b+c=2,
c=2-7a-3b,
代入①,2-6a-2b+d=1,
d=6a+2b-1,
f(x)=ax^3+bx^+(2-7a-3b)x+6a+2b-1
=(x^2-3x+2)(ax+3a+b)+2x-1,
∴ax^3+bx^+cx+d除以(x-1)(x-2)时,所得的余式是2x-1
设f(x)=ax^3+bx^+cx+d,
由余数定理,f(1)=a+b+c+d=1,①
f(2)=8a+4b+2c+d=3,②
②-①,7a+3b+c=2,
c=2-7a-3b,
代入①,2-6a-2b+d=1,
d=6a+2b-1,
f(x)=ax^3+bx^+(2-7a-3b)x+6a+2b-1
=(x^2-3x+2)(ax+3a+b)+2x-1,
∴ax^3+bx^+cx+d除以(x-1)(x-2)时,所得的余式是2x-1