是否存在幂集与自然数集等势的集合?

4个回答

  • 是否存在幂集与自然数集等势的集合?

    不存在.因为不存在比自然数集小的无限集(基础集合论知识),自然数是唯一的可数的无限集.因此不存在一个运算使得自然数集成为一个二阶循环交换群.

    是否存在比连续统大的集合?

    存在(基础集合论知识).例:连续统的幂集比连续统大.连续统的幂集的幂集比连续统的幂集大.这些都属于不可数的无限集.

    "从等势的角度来说,只存在两种无穷大的数集:自然数和连续统."是错误的,可能原话的意思是可数与不可数两种.

    对你的短消息的回答:

    用无限位的所有二进位数表示的集,可以看出这个集其实并不与自然数集等势,因为如果数一下它的元素个数会发现共有2^N 个元素,所以它与自然数的幂集等势,即与连续统等势.就算用任何进位数表示,结果都是一样.

    你可以在书中找到这样一个反证法:无论在有理数集与无限位的小数集之间作出怎样的一一对应,都可以找到一个无限位的小数,而且并没有一个有理数与之对应.因此有理数集与无限位的小数集不存在一一对应.同理可证自然数集与二进位数集的情况.

    因此如果二进位数集能成为一个二阶循环交换群的话,那它的基就会与自然数集等势.