∵a n•b n=1
∴b n=
1
n 2 +3n+2 =
1
(n+1)(n+2)
∴s10=
1
2×3 +
1
3×4 ++
1
10×11 +
1
11×12 =(
1
2 -
1
3 )+ (
1
3 -
1
4 ) ++(
1
10 -
1
11 ) +(
1
11 -
1
12 ) =
1
2 -
1
12 =
5
12
故选项为B.
∵a n•b n=1
∴b n=
1
n 2 +3n+2 =
1
(n+1)(n+2)
∴s10=
1
2×3 +
1
3×4 ++
1
10×11 +
1
11×12 =(
1
2 -
1
3 )+ (
1
3 -
1
4 ) ++(
1
10 -
1
11 ) +(
1
11 -
1
12 ) =
1
2 -
1
12 =
5
12
故选项为B.