数列{an}满足a1=1,an+1=(n-λ)/(n+1)an若存在正整数m当n>m时有an
5个回答
a1=1;
a2=(1-λ)/2;
a3=(2-λ)(1-λ)/6;
……
要有am<0(m
必有a2
即1-λ<2;
(2-λ)(1-λ)<3-3λ;
解得: -1
1年前
1
相关问题
已知数列{an}满足;a1=m(m为正整数)a(n+1)=an/2(an为偶数),a(n+1)=3an+1(an为奇数)
若数列{an}满足a1=1,an=an-1+(n-1)(n>=2.n属于正整数),求[an]通项公式
已知数列{An}满足A1=1/5,切且当n>1,n∈正整数时,A(n-1)/An=[2A(n-1)+1]/(1-2An)
已知数列{An}满足A1=14,A2=-2,An+2=2A(n+1)+15An(n∈N),若数列{A(n+1)+λAn}
已知数列{an}满足a1=1,nan=(n+1)*an-1(n≥2,且n∈正整数),若an=9,则n=?
已知数列{an}满足a(n+1)/an=(n+2)/n(n为正整数),a1=1,则an=?
设数列{An}满足An+1=An^2-nAn+1,n为正整数,当A1>=3时,证明对所有的n>=1,有
已知数列an满足a1=λ,an+1=2/3an+4,其中λ为实数,n为正整数
数列{an}满足:a1=[1/3],且对于任意的正整数m,n都有am+n=am•an,则an=( )
若数列{an}满足a1=1,an+1=3an(n∈N*).