已知数列{a n }的通项为a n ,前n项的和为S n ,且有S n =2-3a n .

1个回答

  • (1)n=1时,s 1=2-3a 1

    ∴a 1=

    1

    2

    当n≥2时3a n=2-S n

    3a n-1=2-S n-1

    ①-②得3(a n-a n-1)=-a n

    ∴ 4 a n =3 a n-1 ⇒

    a n

    a n-1 =

    3

    4

    ∵{a n}是公比为

    3

    4 ,首项为

    1

    2 的等比数列, a n =

    1

    2 (

    3

    4 ) n-1

    (2)∵ a n =

    1

    2 (

    3

    4 ) n-1 =

    2

    3 •

    3

    4 (

    3

    4 ) n-1 =

    2

    3 •(

    3

    4 ) n

    T n =

    2

    3 [1•(

    3

    4 )+2•(

    3

    4 ) 2 +…+n•(

    3

    4 ) n ]①

    3

    4 T n =

    2

    3 [1•(

    3

    4 ) 2 +2•(

    3

    4 ) 3 +…+n•(

    3

    4 ) n+1 ]②

    ①-②得

    1

    4 T n =

    2

    3 [1•(

    3

    4 )+(

    3

    4 ) 2 +…+(

    3

    4 ) n -n•(

    3

    4 ) n+1 ]

    ∴ T n =

    8

    3 [

    3

    4 [1- (

    3

    4 ) n ]

    1-

    3

    4 -n•(

    3

    4 ) n+1 ]=8[1-(

    3

    4 ) n ]-

    8

    3 n•(

    3

    4 ) n+1

    = 8-8(

    3

    4 ) n -

    8

    3 n(

    3

    4 ) n+1 =8-(

    3

    4 ) n [8+

    8

    3 n•

    3

    4 ]=8-(

    3

    4 ) n (8+2n)