(1)n=1时,s 1=2-3a 1
∴a 1=
1
2
当n≥2时3a n=2-S n①
3a n-1=2-S n-1②
①-②得3(a n-a n-1)=-a n,
∴ 4 a n =3 a n-1 ⇒
a n
a n-1 =
3
4
∵{a n}是公比为
3
4 ,首项为
1
2 的等比数列, a n =
1
2 (
3
4 ) n-1
(2)∵ a n =
1
2 (
3
4 ) n-1 =
2
3 •
3
4 (
3
4 ) n-1 =
2
3 •(
3
4 ) n
T n =
2
3 [1•(
3
4 )+2•(
3
4 ) 2 +…+n•(
3
4 ) n ]①
3
4 T n =
2
3 [1•(
3
4 ) 2 +2•(
3
4 ) 3 +…+n•(
3
4 ) n+1 ]②
①-②得
1
4 T n =
2
3 [1•(
3
4 )+(
3
4 ) 2 +…+(
3
4 ) n -n•(
3
4 ) n+1 ]
∴ T n =
8
3 [
3
4 [1- (
3
4 ) n ]
1-
3
4 -n•(
3
4 ) n+1 ]=8[1-(
3
4 ) n ]-
8
3 n•(
3
4 ) n+1
= 8-8(
3
4 ) n -
8
3 n(
3
4 ) n+1 =8-(
3
4 ) n [8+
8
3 n•
3
4 ]=8-(
3
4 ) n (8+2n)