1.在满足定理条件的前提下,函数f(x)上必有【一点的切线】与【f(x)在x=a,b处对应的两点(f(a)和f(b)点的连线平行).f'(ξ)=[f(b)-f(a)]/(b-a),等号后为x=a,b两点的连线斜率,等号前为f(x)上一点的导数的值,也就是f(x)上一点的斜率,两斜率相等,两线平行.这是几何上的理解方式.
1.在满足定理条件的前提下,函数f(x)上必有【一点的切线】与【f(x)在x=a,b处对应的两点(f(a)和f(b)点的连线平行).f'(ξ)=[f(b)-f(a)]/(b-a),等号后为x=a,b两点的连线斜率,等号前为f(x)上一点的导数的值,也就是f(x)上一点的斜率,两斜率相等,两线平行.这是几何上的理解方式.