设z=x+iy,则dz=dx+idy
原式=∫(c) (x-iy)(dx+idy)
=∫(c) xdx+ydy + i∫(c) xdy-ydx
将x=0,y:-1→1代入上式
=∫[-1→1] y dy + i∫[-1→1] 0 dy
=0
若有不懂请追问,如果解决问题请点下面的“选为满意答案”.
设z=x+iy,则dz=dx+idy
原式=∫(c) (x-iy)(dx+idy)
=∫(c) xdx+ydy + i∫(c) xdy-ydx
将x=0,y:-1→1代入上式
=∫[-1→1] y dy + i∫[-1→1] 0 dy
=0
若有不懂请追问,如果解决问题请点下面的“选为满意答案”.