a(n+1)=(an+2)/an
a(n+1)-2 = (-an+2)/an
1/[a(n+1)-2] = -an/(an-2)
= -1 -2/(an-2)
1/[a(n+1)-2]+1/3 = -2[ 1/(an-2) +1/3]
[1/[a(n+1)-2]+1/3]/[ 1/(an-2) +1/3]=-2
[ 1/(an-2) +1/3]/[ 1/(a1-2) +1/3] = (-2)^(n-1)
1/(an-2) +1/3 = (1/3)(-2)^n
an -2 = 3/[ -1 +(-2)^n]
an = 2+3/[ -1 +(-2)^n]
bn = (an-2)/(an+1)
= {3/[ -1 +(-2)^n] }/{ 3+3/[ -1 +(-2)^n] }
= 1/ (-2)^n
=>{bn}是等比数列