∫(1/2->2) (1+x-1/x)e^(x+1/x) dx
= ∫(1/2->2) e^(x+1/x) dx + ∫(1/2->2) (x-1/x)e^(x+1/x) dx,设K = ∫(1/2->2) (x-1/x)e^(x+1/x) dx
= x * e^(x+1/x) - ∫(1/2->2) x de^(x+1/x) + K 2) x * e^(x+1/x) * (1-1/x²) dx + K
= x * e^(x+1/x) - ∫(1/2->2) (x-1/x)e^(x+1/x) dx + K
= (2)e^(2+1/2) - (1/2)e^[(1/2)+1/(1/2)] - K + K
= (3/2)e^(5/2)