理由零点定理判断方程的根设f(x)在闭区间「a,b」上连续,且f(a)b,证明f(x)=x在(a,b)内至少有一个根
1个回答
f(a)-a0
所以函数F(x)=f(x)-x,当x=a时,F(x)0.满足零点定理,所以至少有个根
相关问题
求零点定理证明:设函数f(x)在闭区间[a,b]上连续,且f(a)×f(b)<0,那么在开区间(a,b)至少有一点
设f(x)在[a,b]上连续,且至少有一个零点,证明f(x)在[a,b]上必有最小零点.
设f(x)在区间[a,b]上连续,且在(a,b)内有f''(x)>0,证明[f(x)-f(a)]/(x-a)在区间(a,
设f(x)在闭区间[a,b] 上连续,在开区间[a,b] 内可导,且f(a)=0 ,证明存在ξ∈(a,b) ,使得 f'
设f(x)在闭区间【a,b】上连续,且a
设f(X)在区间[a,b]上连续,在(a,b)内可导,证明:在(a,b)内至少存在一个A,使[b*f(b)-a*f(a)
设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且∫(a,b)f(x)dx=f(b)(b-a).证明:在(a,
函数f(x)在闭区间[a,b]上严格单调且连续,f(a)=A,f(b)=B,证明f([a,b])=(A,B)
设f(x)在[a,b]上连续,且没有零点,证明f(x)在[a,b]上保号
一个高数问题1.设函数 f(x)和g(x) 在闭区间 [a,b]上连续,在开区间(a,b) 内可导,且f(a)=f(b)