一列分数1/4、3/7、1/2、7/13、9/16、11/19、13/22、3/5……
1个回答
1 199/301
2 3007
本数列的规律就是第n项的分子是2n-1,分母是3n+1.按照这个规律就可以得到第100个分数(n=100)和分子是2003的分数(2n-1=2003,n=1002)
相关问题
有一列分数:1/4,3/7,1/2,7/13,9/16,11/19,13/22,3/5.
一列分数1/4,3/7,1/2,7/13,9/16,11/19,13/22,3/5,.第一问是这列分数中第100个分数是
① 2/3,8/9,3/4,2,( ) ② 19/13,1,13/19,10/22,( ) ③ 3/7,1/2,7/13
有一组算式:1+1+1,2+3+4,3+5+7,4+7+10,5+9+13,6+11+16,7+13+19,…,那么第2
计算:1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.19=______.
计算:1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.19=______.
计算:1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.19=______.
1/4,3/7.-5/10,7/13,9/16,-11/19找规律后面三个
1+3+5+7+9+11+13+15+17+19.+199分之2+4+6+8.等于多少 1+3+5+7+9+11+13+
有两个数列分别是1 3 5 7 9 ……11,13,15,17,19,……1993和1,4,7,10,13,16,19…