一个圆被一条直线所截,截得的弦长等于半径,截后的面积怎么求?
设圆半径为R,已知弦长b=R;那么该弦所对的圆心角θ=π/3;弓形的高h=R-Rcos(π/6)
=R(1-√3/2);于是弓形的面积=(1/2)R²[π/3-sin(π/3)]=(1/2)R²(π/3-√3/2);
弦b与优弧所包围的面积=πR²-(1/2)R²(π/3-√3/2)=(5π/6+√3/4)R²;
你要哪一部份的面积就选用哪个公式.,
一个圆被一条直线所截,截得的弦长等于半径,截后的面积怎么求?
设圆半径为R,已知弦长b=R;那么该弦所对的圆心角θ=π/3;弓形的高h=R-Rcos(π/6)
=R(1-√3/2);于是弓形的面积=(1/2)R²[π/3-sin(π/3)]=(1/2)R²(π/3-√3/2);
弦b与优弧所包围的面积=πR²-(1/2)R²(π/3-√3/2)=(5π/6+√3/4)R²;
你要哪一部份的面积就选用哪个公式.,