lim(x->0,y->0)f(x,y)=0=f(0,0),所以:在点(0,0)连续
fx(0,0)=lim(x->0){[x^2*cos(1/x^2)]-f(0,0)}/x
=lim(x->0)x*cos(1/x^2)=0
fy(0,0)=lim(y->0){[y^2*cos(1/y^2)]-f(0,0)}/y
=lim(y->0)y*cos(1/y^2)=0
lim(x->0,y->0)f(x,y)=0=f(0,0),所以:在点(0,0)连续
fx(0,0)=lim(x->0){[x^2*cos(1/x^2)]-f(0,0)}/x
=lim(x->0)x*cos(1/x^2)=0
fy(0,0)=lim(y->0){[y^2*cos(1/y^2)]-f(0,0)}/y
=lim(y->0)y*cos(1/y^2)=0