当n=1时
a1=s1=1
当n>1时:
an=sn-sn-1=n^2-(n-1)^2+4=2n-5
第2问要求证的结论应该是证明1/4≤Tn<1吧
证明如下:
Tn =1/2-1/2^2+1/2^3+3/2^4+...+(2n-7)/2^(n-1)+(2n-5)/2^n
=1/2^2+1/2^3+3/2^4+...+(2n-7)/2^(n-1)+(2n-5)/2^n
2Tn=1/2+1/2^2+3/2^3+5/2^4+...+(2n-5)/2^(n-1)
相减:Tn=1/2+1/2^2+1/2^3+.+1/2^(n-2) - (2n-5)/2^n
=1-1/2^(n-2)-(2n-5)/2^n
=1-(2n-1)/2^n<1
同时:T1=1/2,T2=1/4,(2n-1)/2^n在n≥2时单调减
--->Tn≥T2=1/4