an-bn=(1/2)n^2-7n+18-2-(1/2)^(n-3)
=(1/2)n^2-(1/2)^(n-3)-7n+16
n=1或n=2,n=3时
an-bn>1
n>3时,1>(1/2)^(n-3)>0
(1/2)n^2-7n+16 >an-bn>(1/2)n^2-1-7n+16
(1/2)(n-7)^2-17/2>an-bn>(1/2)(n-7)^2-19/2
n=11
(-1/2)>an-bn>(-3/2)
n=12
4>an-bn>3
因此不存在整数k
0
an-bn=(1/2)n^2-7n+18-2-(1/2)^(n-3)
=(1/2)n^2-(1/2)^(n-3)-7n+16
n=1或n=2,n=3时
an-bn>1
n>3时,1>(1/2)^(n-3)>0
(1/2)n^2-7n+16 >an-bn>(1/2)n^2-1-7n+16
(1/2)(n-7)^2-17/2>an-bn>(1/2)(n-7)^2-19/2
n=11
(-1/2)>an-bn>(-3/2)
n=12
4>an-bn>3
因此不存在整数k
0