2/(x-2)+mx/(x^2-4)=3/(x+2),通分得:
2(x+2)+mx=3(x-2)
(m-1)x=-10
a=1时,x有无数解,不符题意,故a≠1
x=-10/(a-1)
有方程成立的条件是x^2-4≠0,即x≠±2
x=±2时,-10(m-1)=±2,m=4/5或6/5,此即所求的m值.
2/(x-2)+mx/(x^2-4)=3/(x+2),通分得:
2(x+2)+mx=3(x-2)
(m-1)x=-10
a=1时,x有无数解,不符题意,故a≠1
x=-10/(a-1)
有方程成立的条件是x^2-4≠0,即x≠±2
x=±2时,-10(m-1)=±2,m=4/5或6/5,此即所求的m值.