答:
②得到③纯粹就是算积分啊,
∫ydy/(1+y^2)=1/2ln(1+y^2)+C1;
∫(1/x-x/(1+x^2))dx=ln(x)-1/2ln(1+x^2)+C2,
令lnC=C2-C1,反正是常数,凑形式.
③得出④,左右两边同乘以2,移项.
ln(1+y^2)+ln(1+x^2)=2(lnx+lnC)
即:ln((1+x^2)(1+y^2))=2ln(Cx)=ln(C^2x^2)
(对数性质lna+lnb=lnab,alnb=ln(b^a))
就有:(1+x^2)(1+y^2)=C^2x^2