知x2-xy-2y2=0,且x≠0,y≠0,求代数式x2−2xy−5y2x2+2xy+5y2的值.

1个回答

  • 解题思路:首先把x2-xy-2y2=0的左边分解因式可得(x-2y)(x+y)=0,进而可得x-2y=0或x+y=0,即x=2y或x=-y,再把x=2y或x=-y分别代入代数式

    x

    2

    −2xy−5

    y

    2

    x

    2

    +2xy+5

    y

    2

    即可算出代数式的值.

    ∵x2-xy-2y2=0,

    ∴(x-2y)(x+y)=0,

    ∴x-2y=0或x+y=0.

    ∴x=2y或x=-y.

    当x=2y时,

    x2−2xy−5y2

    x2+2xy−5y2=

    (2y)2−2•2y•y−5y2

    (2y)2+2•2y•y+5y2=

    −5y2

    13y2=−

    5

    13;

    当x=-y时,

    x2−2xy−5y2

    x2+2xy+5y2=

    (−y)2−2•(−y)•y−5y2

    (−y)2+2•(−y)•y+5y2=

    −2y2

    4y2=−

    1

    2.

    点评:

    本题考点: 解一元二次方程-因式分解法.

    考点点评: 此题主要考查了求分式的值,关键是把x2-xy-2y2=0转化为x=2y或x=-y,再用代入法求值即可.