解题思路:首先把x2-xy-2y2=0的左边分解因式可得(x-2y)(x+y)=0,进而可得x-2y=0或x+y=0,即x=2y或x=-y,再把x=2y或x=-y分别代入代数式
x
2
−2xy−5
y
2
x
2
+2xy+5
y
2
即可算出代数式的值.
∵x2-xy-2y2=0,
∴(x-2y)(x+y)=0,
∴x-2y=0或x+y=0.
∴x=2y或x=-y.
当x=2y时,
x2−2xy−5y2
x2+2xy−5y2=
(2y)2−2•2y•y−5y2
(2y)2+2•2y•y+5y2=
−5y2
13y2=−
5
13;
当x=-y时,
x2−2xy−5y2
x2+2xy+5y2=
(−y)2−2•(−y)•y−5y2
(−y)2+2•(−y)•y+5y2=
−2y2
4y2=−
1
2.
点评:
本题考点: 解一元二次方程-因式分解法.
考点点评: 此题主要考查了求分式的值,关键是把x2-xy-2y2=0转化为x=2y或x=-y,再用代入法求值即可.