证明方法1:假设x∈A∩(B∪C),则x∈A且x∈B∪C,即x∈A且x∈B或x∈C.得出x∈A且x∈B或者x∈A且x∈C.x∈A∩B或者x∈A∩C,这个就等价了等式右边的式子了.
证明方法2:
集合的运算与布尔代数的逻辑运算,以及命题的逻辑运算本质上是一回事.
元素在集合里可以用1表示,不在集合里用0表示
,因为只有A B C三个变量,也就是说有2的3次方行数,画一个真值表就行.无论A B C 如何变化,等式左边的真值总是与等式右边的真值相同.即得证.
证明方法1:假设x∈A∩(B∪C),则x∈A且x∈B∪C,即x∈A且x∈B或x∈C.得出x∈A且x∈B或者x∈A且x∈C.x∈A∩B或者x∈A∩C,这个就等价了等式右边的式子了.
证明方法2:
集合的运算与布尔代数的逻辑运算,以及命题的逻辑运算本质上是一回事.
元素在集合里可以用1表示,不在集合里用0表示
,因为只有A B C三个变量,也就是说有2的3次方行数,画一个真值表就行.无论A B C 如何变化,等式左边的真值总是与等式右边的真值相同.即得证.