已知m、n互为相反数,且满足(m+4)2-(n+4)2=16,求m2+n2−mn的值.

2个回答

  • 解题思路:由m与n互为相反数得到m+n=0,将已知等式左边利用平方差公式分解因式,将m+n的值代入得到m-n=2,两方程联立组成方程组求出m与n的值,代入所求式子中计算即可求出值.

    ∵m与n互为相反数,

    ∴m+n=0①,

    ∵(m+4)2-(n+4)2=[(m+4)+(n+4)][(m+4)-(n+4)]=(m+n+8)(m-n)=16,

    ∴8(m-n)=16,即m-n=2②,

    联立①②解得:m=1,n=-1,

    则m2+n2-[m/n]=1+1+1=3.

    点评:

    本题考点: 因式分解的应用.

    考点点评: 此题考查了因式分解的应用,以及相反数,求出m与n的值是解本题的关键.