我们注意到tanx是一个以π为周期的周期函数
所以f(0)=f(2)=f(4)=f(8)=.=tan(π/4)=1
f(1)=f(3)=f(5)=f(7)=.=tan(π/4+π/2)=-1
所以f(1)+f(2)+.+f(2004)
=(f(1)+f(2))+(f(3)+f(4))+.+(f(2003)+f(2004))
=0+0+.+0
=0
我们注意到tanx是一个以π为周期的周期函数
所以f(0)=f(2)=f(4)=f(8)=.=tan(π/4)=1
f(1)=f(3)=f(5)=f(7)=.=tan(π/4+π/2)=-1
所以f(1)+f(2)+.+f(2004)
=(f(1)+f(2))+(f(3)+f(4))+.+(f(2003)+f(2004))
=0+0+.+0
=0