(3)∵lim(x->0)[x/(e^x-1)]
=lim(x->0)(1/e^x) (0/0型极限,应用罗比达法则)
=1
lim(x->0)[x/ln(1+x)]
=lim(x->0)(1+x) (0/0型极限,应用罗比达法则)
=1
lim(x->0)[(1-cosx)/x^2]
=lim(x->0)[(1/2)(sinx/x)] (0/0型极限,应用罗比达法则)
=(1/2)*1 (应用重要极限lim(t->0)(sint/t)=1)
=1/2
∴lim(x->0){(1-cosx)/[(e^x-1)ln(1+x)]}
=lim(x->0){[x/(e^x-1)]*[x/ln(1+x)]*[(1-cosx)/x^2]}
={lim(x->0)[x/(e^x-1)]}*{lim(x->0)[x/ln(1+x)]}*{lim(x->0)[(1-cosx)/x^2]}
=1*1*(1/2)
=1/2
=0.5
(5)令An=1/√(n^2+1)+1/√(n^2+2)+.+1/√(n^2+n)
∵n/√(n^2+n)≤An≤n/√(n^2+1)∞)[n/√(n^2+n)]=lim(n->∞)[1/√(1+1/n)]=1
∴1=lim(n->∞)[n/√(n^2+n)]≤lim(n->∞)An≤n/√(n^2+1)lim(n->∞)An=1
即lim(n->∞)[1/√(n^2+1)+1/√(n^2+2)+.+1/√(n^2+n)]=1.