极限limn→无穷 (2n^2-3n+1)/n+1 sin1/n
2个回答
原式=极限limn→无穷 (2n^2-3n+1)/n(n+1)
=lim(n->∞)(2-3/n+1/n^2)/(1+1/n)
=2/1
=2
相关问题
limn(sin1/n+sin2/n+...+sin100/n)求极限过程
求极限:lim((2n∧2-3n+1)/n+1)×sin n趋于无穷
利用极限存在准则证明:limn趋向于无穷,n【1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)】=
求下列极限limn→∞[n^3(√(n^2+2)-2√(n^2+1)+n)]
几道求极限的题目(高手进)limn→∞((2^n)*n!/n^n)limx→0√(sin(1/x^2))limn→∞((
极限 lim(x-->无穷)(1/n sin(n)+1/n sin(1/n)+nsin(1/n))
n趋于正无穷求极限n^2*ln[n*sin(1/n)]
[(2n+3n)/( 2n+1+3n+1)]的极限,n趋于无穷
求极限lim(1+2^n+3^n)^1/n.n-->无穷.
极限limn→∞[3/1^2*2^2+5/2^2*3^2+...+2n+1/n^2*(n+1)^2]