a=4,f(x)=(4+lnx)/x
f(e)=(4+1)/e=5/e
f'(x)=(1/x*x-(4+lnx)*1)/x^2=(-3-lnx)/x^2
f'(e)=-4/e^2
即切线的斜率k=f'(e)=-4/e^2
切线方程是y-5/e=-4/e^2*(x-e)
即是y=-4/e^2 x+8/e
a=4,f(x)=(4+lnx)/x
f(e)=(4+1)/e=5/e
f'(x)=(1/x*x-(4+lnx)*1)/x^2=(-3-lnx)/x^2
f'(e)=-4/e^2
即切线的斜率k=f'(e)=-4/e^2
切线方程是y-5/e=-4/e^2*(x-e)
即是y=-4/e^2 x+8/e