解题思路:(1)根据旋转可得AE=CE,DE=EF,可判定四边形ADCF是平行四边形,然后证明DF⊥AC,可得四边形ADCF是菱形;
(2)首先利用勾股定理可得AB长,再根据中点定义可得AD=5,根据菱形的性质可得AF=FC=AD=5,进而可得答案.
(1)证明:∵将△ADE绕点E旋转180°得到△CFE,
∴AE=CE,DE=EF,
∴四边形ADCF是平行四边形,
∵D、E分别为AB,AC边上的中点,
∴DE是△ABC的中位线,
∴DE∥BC,
∵∠ACB=90°,
∴∠AED=90°,
∴DF⊥AC,
∴四边形ADCF是菱形;
(2)在Rt△ABC中,BC=8,AC=6,
∴AB=10,
∵D是AB边上的中点,
∴AD=5,
∵四边形ADCF是菱形,
∴AF=FC=AD=5,
∴四边形ABCF的周长为8+10+5+5=28.
点评:
本题考点: 菱形的判定与性质;旋转的性质.
考点点评: 此题主要考查了菱形的判定与性质,关键是掌握菱形四边相等,对角线互相垂直的平行四边形是菱形.