(1)原式=[sinα−sinα−tanα/tanα+cosα−cosα]=[−tanα/tanα]=-1;
(2)原式=sin120°cos(360°-30°)-sin(720°-30°)cos(-720°+60°)+tan(720°-45°)+[1
tan(720°+45°)=
3/2]×
3
2+[1/2]×[1/2]-1+1=1.
(1)原式=[sinα−sinα−tanα/tanα+cosα−cosα]=[−tanα/tanα]=-1;
(2)原式=sin120°cos(360°-30°)-sin(720°-30°)cos(-720°+60°)+tan(720°-45°)+[1
tan(720°+45°)=
3/2]×
3
2+[1/2]×[1/2]-1+1=1.