用因式除法可知,不能分解成x+1或者x-1的因式
因此应分解成两个二项式相乘
用待定系数法,
设可分解成(x^2+ax-1)(X^2+bx-1),展开、归项后无解
设可分解成(x^2+ax+1)(X^2+bx+1),展开、归项得
x^4+(a+b)x^3+(ab+2)x^2+(a+b)x+1
则a+b=0 ab+2=0 解得 a=±√2 求得b 一齐代入即可
用因式除法可知,不能分解成x+1或者x-1的因式
因此应分解成两个二项式相乘
用待定系数法,
设可分解成(x^2+ax-1)(X^2+bx-1),展开、归项后无解
设可分解成(x^2+ax+1)(X^2+bx+1),展开、归项得
x^4+(a+b)x^3+(ab+2)x^2+(a+b)x+1
则a+b=0 ab+2=0 解得 a=±√2 求得b 一齐代入即可