解题思路:(1)取AA1,的中点G,连接DG,EG,根据三角形中位线定理及面面平行的第二判定定理可得平面GDE∥平面ABC,再由面面平行的性质得到DE∥平面ABC;
(2)根据等腰三角形三线合一,可得AF⊥BC,由面面垂直的性质定理和线面垂直的性质定理可得B1F⊥AF;由勾股定理可得B1F⊥EF,最后由线面垂直的判定定理得到B1F⊥平面AEF.
(3)以A为坐标原点,分别以AB,AC,AA1所在直线为x轴,y轴,z轴建立空间直角坐标系O-xyz,分别求出平面B1AE和平面AEF的法向量,代入向量夹角公式,可得答案.
证明:(1)取AA1,的中点G,连接DG,EG
∵D,E为AB1,CC1的中点,
则DG∥AB,EG∥AC,
又∵DG,EG⊂平面GDE,DG∩EG=G,AB,AC⊂平面ABC
∴平面GDE∥平面ABC,
又∵DG⊂平面GDE
∴DG∥平面ABC.
(2)连结AF,则AF⊥平面BCC1B1.
∵AB=AC,F为BC的中点
∴AF⊥BC
∵棱柱ABC-A1B1C1为直棱柱
∴平面ABC⊥平面BCC1B1.
又∵平面ABC∩平面BCC1B1=BC
∴AF⊥平面BCC1B1,
又∵B1F⊂平面BCC1B1,
∴B1F⊥AF,
在△B1FE中,B1F=
6
2AB,B1=[3/2]AB,EF=
3
2AB
由勾股定理易得B1F⊥EF,
又∵AF,EF⊂平面AEF,AF∩EF=F
∴B1F⊥平面AEF.
(3)以A为坐标原点,分别以AB,AC,AA1所在直线为x轴,y轴,z轴建立空间直角坐标系O-xyz,
则
B1F=(−
1
2,[1/2],-1)为平面AEF的法向量.
又
AB1=(1,0,1),
AE=(0,1,[1/2]),
设平面B1AE的法向量为
点评:
本题考点: 直线与平面平行的判定;直线与平面垂直的判定;二面角的平面角及求法.
考点点评: 本题考查的知识点是直线与平面平行的判定,直线与平面垂直的判定,二面角的求法,熟练掌握空间线面关系判定的方法和步骤是解答(1)(2)的关键.建立空间坐标系将二面角问题转化为向量夹角问题是解答(3)的关键.