tanx=4/3,根据sin^2x+cos^2x=1,可以求出cosx=1/±√(1+tan^2x)=±3/5.
cos(2x-π/3)cos(π/3-x)-sin(2x-π/3)sin(π/3-x)=cos(2x-π/3+π/3-x)=cosx=±3/5.
tanx=4/3,根据sin^2x+cos^2x=1,可以求出cosx=1/±√(1+tan^2x)=±3/5.
cos(2x-π/3)cos(π/3-x)-sin(2x-π/3)sin(π/3-x)=cos(2x-π/3+π/3-x)=cosx=±3/5.