∵S n=a 1+a 2+a 3+…+a n
= log 2
1
2 + log 2
2
3 +…+ log 2
n
n+1
= log 2 (
1
2 ×
2
3 ×…×
n
n+1 )
= log 2
1
n+1 了
由S n<-4可得, log 2
1
n+1 <-4
解不等式可得,n>15
故选D.
∵S n=a 1+a 2+a 3+…+a n
= log 2
1
2 + log 2
2
3 +…+ log 2
n
n+1
= log 2 (
1
2 ×
2
3 ×…×
n
n+1 )
= log 2
1
n+1 了
由S n<-4可得, log 2
1
n+1 <-4
解不等式可得,n>15
故选D.