sin(A+B)=3/5,sin(A-B)=1/5
sin(a+b)=sinAcosB+sinBcosA=3/5
sin(a-b)=sinAcosB-sinBcosA=1/5
两式相加相减后可得:
sinAcosB=2/5
sinBcosA=1/5
将两式相除,可得tanA=2tanB
sin(A+B)=3/5,sin(A-B)=1/5
sin(a+b)=sinAcosB+sinBcosA=3/5
sin(a-b)=sinAcosB-sinBcosA=1/5
两式相加相减后可得:
sinAcosB=2/5
sinBcosA=1/5
将两式相除,可得tanA=2tanB