y=ax²+bx=a[x²+bx/a+(b/2a)²]-a×b²/4a²=a(x+b/2a)²-b²/4a(1)顶点坐标是(1,1),则
b/2a=1 -b²/4a=1联立解得a=-1 b=-2即a=-1(2)当顶点坐标是(m,m),m≠0时b/2a=m -b²/4a=mb=2am-4a²m²/4a=mam=-1即a与m的关系式是am=-1
y=ax²+bx=a[x²+bx/a+(b/2a)²]-a×b²/4a²=a(x+b/2a)²-b²/4a(1)顶点坐标是(1,1),则
b/2a=1 -b²/4a=1联立解得a=-1 b=-2即a=-1(2)当顶点坐标是(m,m),m≠0时b/2a=m -b²/4a=mb=2am-4a²m²/4a=mam=-1即a与m的关系式是am=-1