1)由C=2A,则sinC=sin2A=2sinAcosA=3/2sinA
则由正弦定理得c/a=sinC/sinA=3/2
2)由a+c=10.c/a=3/2得c=6,a=4
又由余弦定理得cosA=(b^2+c^2-a^2)/(2bc)=3/4
故4(b^2+36-16)=6x6b
即b^2-9b+20=(b-4)(b-5)=0
即b=4或b=5
1)由C=2A,则sinC=sin2A=2sinAcosA=3/2sinA
则由正弦定理得c/a=sinC/sinA=3/2
2)由a+c=10.c/a=3/2得c=6,a=4
又由余弦定理得cosA=(b^2+c^2-a^2)/(2bc)=3/4
故4(b^2+36-16)=6x6b
即b^2-9b+20=(b-4)(b-5)=0
即b=4或b=5