由f(x1+x2)=f(x1)f(x2),得该函数类型为
f(x)=b*a∧x(指数型函数)
f(x)'=b(a∧x)㏑a
所以f'(0)=blna=2
所以a=e∧n,b=2/n所以f(x)=(2/n)e∧(nx)(n!=0)
f'(x)=2e∧x(题目应该还缺条件给你加个条件:f(1)=2e,则f(x)=2e∧x)
由f(x1+x2)=f(x1)f(x2),得该函数类型为
f(x)=b*a∧x(指数型函数)
f(x)'=b(a∧x)㏑a
所以f'(0)=blna=2
所以a=e∧n,b=2/n所以f(x)=(2/n)e∧(nx)(n!=0)
f'(x)=2e∧x(题目应该还缺条件给你加个条件:f(1)=2e,则f(x)=2e∧x)