1、如图甲,质量为m=1Kg的物块放在倾角为θ的斜面上,斜面体质量为M=2Kg,斜面与物块间的动摩擦因数μ=0.2,地面光滑,θ=370,现对斜面体施一水平推力F,要使物体m相对斜面静止,力F应为多大?(设物体与斜面间的最大静摩擦力等于滑动摩擦力,g取10m/s2)
[解析]:现采用极限法把F推向两个极端来分析:当F较大时(足够大),物块将相对斜面上滑;当F较小时(趋于零),物块将沿斜面加速下滑;因此F不能太小,也不能太大,F的取值是一个范围.
(1)设物块处于相对斜面向下滑的临界状态时,推力为F1,此时物块受力如图乙,取加速度a的方向为x轴正方向.
对m:x方向:NSinθ-μNCosθ=ma1
y方向:NCosθ+μNSinθ-mg=0
对整体:F1=(M+m)a1
把已知条件代入,解得:a1=4.78m/s2,F1=14.34N
(2)设物块处于相对斜面向上滑的临界状态时,推力为F2,此时物块受力如图丙,
对m:x方向:NSinθ+μNCosθ=ma2
y方向:NCosθ-μNSinθ-mg=0
对整体:F2=(M+m)a2
把已知条件代入,解得:a2=11.2m/s2,F2=33.6N
则力F的范围:14.34N≤F≤33.6N