设P(x1,y1),Q(x2,y2)
则:(x1+x2)/2=2,(y1+y2)/2=1
x1^2/16+y1^2/9=1,x2^2/16+y2^2/9=1
所以
(x1^2-x2^2)/16+(y1^2-y2^2)/9=0
(y1+y2)(y1-y2)/9=-(x1-x2)(x1+x2)/16
(y1-y2)/(x1-x2)=-9(x1+x2)/16(y1+y2)=-36/32=-9/8
所以,PQ斜率为:-9/8
PQ直线方程为:
y-1=-9/8*(x-2)
即:8y+9x=26
设P(x1,y1),Q(x2,y2)
则:(x1+x2)/2=2,(y1+y2)/2=1
x1^2/16+y1^2/9=1,x2^2/16+y2^2/9=1
所以
(x1^2-x2^2)/16+(y1^2-y2^2)/9=0
(y1+y2)(y1-y2)/9=-(x1-x2)(x1+x2)/16
(y1-y2)/(x1-x2)=-9(x1+x2)/16(y1+y2)=-36/32=-9/8
所以,PQ斜率为:-9/8
PQ直线方程为:
y-1=-9/8*(x-2)
即:8y+9x=26