解题思路:(1)利用待定系数法求函数的解析式即可;
(2)已知∠ABD是直角,若连接圆心和切点(暂定为E),不难看出Rt△OAB、Rt△EBC相似(或全等),可据此求出⊙C的半径,再将该半径与点C到对称轴l的距离进行比较即可;
(3)此题应分两种情况讨论:
①BC为平行四边形的边;那么将点Q向左或向右平移BC长,即可得到点P的横坐标,再代入抛物线的解析式中求解即可;
②BC为平行四边形的对角线;根据平行四边形的中心对称性,点P必在抛物线的对称轴上,显然只有抛物线的顶点符合点P的要求.
(1)根据题意,可设抛物线的解析式为y=ax2+bx+4,根据题意,得:
9a+3b+4=0
64a+8b+4=0,
解得
a=
1
6
b=−
11
6.
故抛物线的解析式为y=[1/6]x2-[11/6]x+4;
(2)设⊙C与BD相切于点E,连接CE,则∠BEC=∠AOB=90°.
∵A(0,4)、B(3,0)、C(8,0),
∴OA=4,OB=3,OC=8,BC=5;
∴AB=
OA2+OB2=5,
∴AB=BC.
∵AB⊥BD,
∴∠ABC=∠EBC+90°=∠OAB+90°,
∴∠EBC=∠OAB,
∴
∠OAB=∠EBC
∠AOB=∠BEC
AB=BC
点评:
本题考点: 二次函数综合题.
考点点评: 此题主要考查的是利用待定系数法确定函数解析式、全等三角形的判定和性质、直线与圆的位置关系以及平行四边形的特点等重要知识点;(4)的类型题中,根据平行四边形的特点,将一点平移得出另一点,再代入抛物线的解析式中求解;或过两点作坐标轴的垂线,通过构建全等三角形求解都是常用的方法.