证明:因为
(b-c)/[(a-b)(a-c)]=[(b-a)+(a-c)]/[(a-b)(a-c)]=1/(a-b)+1/(c-a),
(c-a)/[(b-c)(b-a)]=[(c-b)+(b-a)]/[(b-c)(b-a)]=1/(b-c)+1/(a-b),
(a-b)/[(c-a)(c-b)]=[(a-c)+(c-b)]/[(c-a)(c-b)]=1/(b-c)+1/(c-a),
三式相加得(b-c)/[(a-b)(a-c)]+(c-a)/[(b-c)(b-a)]+(a-b)/[(c-a)(c-b)]=2/(a-b)+2/(b-c)+2/(c-a),
命题得证.