①当n=1时,S1=1/2 T1=1/2 ∴S1=T1
②当n=2时,S2=1/2+1/12=7/12 T1=1/3+1/4 =7/12 ∴S2=T2
③假定Sn=Tn
S(n+1)=Sn+1/(2n+1)-1/(2n+2)
T(n+1)=Tn-1/(n+1)+1/(2n+1)+1/(2n+2)
=Tn+1/(2n+1)-[1/(n+1)-1/(2n+2)]
=Tn+1/(2n+1)-1/(2n+2)
可见S(n+1)=T(n+1),证毕
①当n=1时,S1=1/2 T1=1/2 ∴S1=T1
②当n=2时,S2=1/2+1/12=7/12 T1=1/3+1/4 =7/12 ∴S2=T2
③假定Sn=Tn
S(n+1)=Sn+1/(2n+1)-1/(2n+2)
T(n+1)=Tn-1/(n+1)+1/(2n+1)+1/(2n+2)
=Tn+1/(2n+1)-[1/(n+1)-1/(2n+2)]
=Tn+1/(2n+1)-1/(2n+2)
可见S(n+1)=T(n+1),证毕