已知f(x)是正比例函数,g(x)是反比例函数,若f(1)=g(1),f(2)=g(2)+9,试求f(3)-g(3)的值
1个回答
f(x)=k1x
g(x)=k2/x
f(1)=g(1),k1=k2
f(2)=g(2)+9,2k=k/2+9 k=6
f(3)-g(3)=6*3-6/3=16
相关问题
已知f(x)是正比例函数,g(x)是反比例函数,若f(1)=g(1),f(2)=g(2)+9,试求f(3)-g(3)的值
已知函数f(x)是正比例函数,函数g(x)反比例函数,且f(1)=1,g(1)=2,求f(x),g(x).
已知函数f(x)是正比例函数,函数g(x)是反比例函数,且f( 1)=1,g(1)=2,求函数f(x)+g(x)...
已知函数f(x)是正比例函数,函数g(x)是反比例函数,且f(1)=1,g(1)=2.
已知函数f(x)是正比例函数,函数g(x)是反比例函数,且f(1)=1,g(1)=2.
已知函数f(x)是正比例函数,函数g(x)是反比例函数,且f(1)=1,g(1)=2.
已知函数f(x)是正比例函数,函数g(x)是反比例函数,且f(1)=1,g(1)=2.
已知f(x)是正比例函数,函数g(x)是反比例函数,且f(x)/g(x)=2,f(2)+4g(2)=6,求f(x)及
已知函数F(x)=f(x)+g(x),其中f(x)是正比例函数,g(x)是反比例函数,且F(1/3)=16,F(1)=8
已知函数y=f(x)=g(x)+h(x),其中g(x)是正比例函数,h(x)是反比例函数且f(1)=0,f(2)=3\2