f(x)=e^x/(e^x+1)
即 y=e^x/(e^x+1)
∴ y(e^x+1)=e^x
∴ y*e^x+1=e^x
∴ (1-y)e^x=y
∴ e^x=y/(1-y)
∴ x=ln[y/(1-y)]
交换x,y即得反函数
∴ f(x)=e^x/(e^x+1)的反函数是y=ln[x/(1-x)] (0
f(x)=e^x/(e^x+1)
即 y=e^x/(e^x+1)
∴ y(e^x+1)=e^x
∴ y*e^x+1=e^x
∴ (1-y)e^x=y
∴ e^x=y/(1-y)
∴ x=ln[y/(1-y)]
交换x,y即得反函数
∴ f(x)=e^x/(e^x+1)的反函数是y=ln[x/(1-x)] (0